

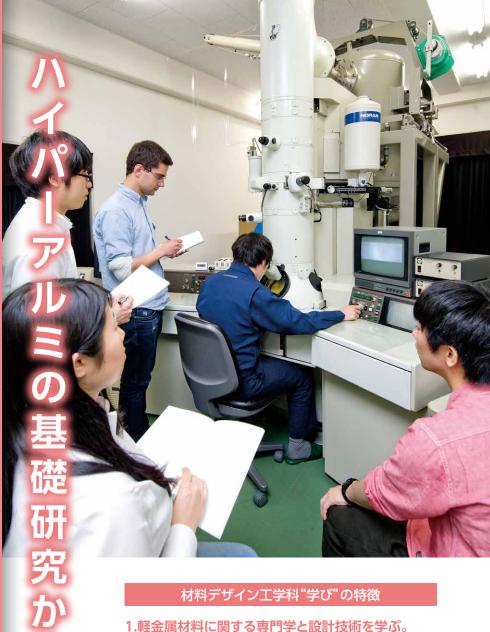
原子レベルから巨大構造物まで 広い視点で未来の

基盤材料を研究開発。

多国籍学術交流にも取り組み

グローバルな

材料エンジニアを育成。



こんな夢を 実現したい人集まれ!

- ■物理学や化学の専門知識を高めたい。
- ■新素材や新機能材料の開発に興味 がある。
- ■社会や自然環境に強い興味があっ て、災害被害を解決したい。
- ■新しい自動車、航空・宇宙、鉄道用材 料を作りたい。

卒業後の進路

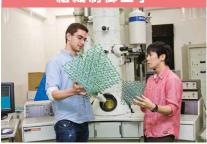
自動車、鉄鋼·非鉄金属、半導体、 精密機器メーカーなどの製造業。 化学プラントの設計施工・安全管 理部門、土木建設分野などでの 活躍が期待されます。

- 2.防災・減災に関わる材料の開発と研究。
- 3.富山の基幹産業、アルミ産業に資する教育と研究。

深海・地中から洋上・地上さらには宇宙空間まで、あらゆるところで 活躍する材料を主題として、原子・分子のナノメートルから巨大構造 物まで未来社会の基盤材料をデザインし創出するために必要な科 学・工学の教育研究を行い、国際性豊かな材料エンジニアを育成し ます。

本学科の教育プログラムは、富山県の基幹産業・アルミをはじめとし た軽金属を主軸とした材料工学関連の科目や、鉄鋼工学をはじめと した土木インフラ系関連の科目を設置し、座学と実習・実験・演習が 相互に連動したものにします。

グローバル軽金属教育という観点では、国外9ヵ国の学術交流協定 校と共同して国際会議の主催共催、学生の派遣受け入れを行うな ど、海外研究者による講義や研究指導にも取組んでいきます。


材料デザイン工学科で学べること

素形制御工学

鋳造・凝固・アルミニウム・マグ ネシウム・ダイカスト

地球規模で危ぶまれている温暖化の抑止に貢献 すべく、航空機や輸送車両の軽量化・燃費向上が 達成可能な、次世代・軽金属材料の探求と各種鋳 造法・ダイカスト法等の実機による成形・鋳造トラ イを通じて、素形材分野で活躍可能なエンジニア の育成を目指した教育・研究を行います。

kev

アルミニウム・軽金属・ナノ-ミク 口組織・熱処理・相変態・複合材 料•電子顕微鏡•結晶構造

省エネルギーや環境保全実現のために、新しい材 料の製造法や設計法の確立を目的として、高分解 能電子顕微鏡を用いた原子レベルの材料組織の 構造解析と、マクロな領域の物性評価結果を、新 材料の創製に直結させる 「材料組織制御技術」 に 関する教育・研究を行います。

機能制御工学

word

セラミックス・金属・薄膜・機能性 材料•電気的•熱的特性評価•結 晶構造解析

電子デバイスから構造材料に至るまでのセラミッ クス、金属系材料を中心にして組織制御やレア アース添加による機能性発現をデザインし、新素 材創製プロセスの開発と応用、評価等の一連の 「材料の機能制御」に関する総合的な教育・研究 を行います。

環境材料工学

腐食防食・表面処理・電気化学・ 腐食速度•不動態皮膜

実用化される材料は例外なく特定の環境中で使用 される。これら材料の表界面特性を電気化学的観 点から把握・制御することで、材料が持つ新しい 機能を開拓する。高耐食性材料の開発、耐食性機 構の解明及び耐食機能の向上に関する教育・研究 を行います。

物性制御コ

word

超伝導材料•熱電材料•磁性材料• 電磁気特性評価·熱特性評価· 新物質探索

文明の大きな変化は新しい物質・機能の発見と結 びついています。室温で超伝導になる物質ができ れば、産業の革命が起きるでしょう。物理学的ア プローチで超伝導材料、磁性材料、軽金属材料及 び鉄鋼材料の電気・磁気・熱的特性評価と新物質 の探索に関する教育・研究を行います。

材料プロセス工学

word

溶接・接合・界面制御・熱および 物質移動・対流・拡散・可視化・ 数値シミュレーション

ものづくりにおいてとても大切な「つなぐ:接合す る」という工学を主題として、熱と物質が移動する 複雑場である界面の物理と化学の根本原理を明 らかにし、これを制御し高機能素材ならびに高信 頼性構造物を造り出すためのプロセスに関する界 面制御工学の教育・研究を行います。

この他に 材料成形加工学

計算材料学

鉄鋼材料工学

バイオ材料工学

分野があります。

材料デザイン工学科の主なカリキュラム

1 年 次

教養教育科目 微分積分学I 力学 物理化学I データサイエンスI 都市デザイン学総論

2 年 次

結晶構造解析学 材料加工学I 循環資源材料工学I 鉄鋼材料学 工学基礎実験 デザイン思考基礎

3 年 次

固体物性工学 素形材工学I 組織制御工学 溶接冶金学 材料デザイン工学実験 地域デザインPBL

4 年 次

材料デザイン工学輪読 工場実習

材料デザイン工学科において取得可能となる免許・資格の例

【国家資格】技術士補/技術士/エネルギー管理士/毒物劇物取扱責任者/ 高圧ガス製造保安責任者/安全管理者/危険物取扱者/公害防止管理者/ X線作業主任者

【民間資格】非破壊検査技術者

国際的に通用する技術者資格が必要な時代です。

JABEE認定プログラムについて

JABEEの認定基準を満たしたカリキュラムは、卒業すれ ば、国家試験である技術士の第一次試験が免除されます。 材料デザイン工学科は認定済みです。

※各資格を取得するにあたって、それぞれ一定の条件が必要となります。

■材料デザイン工学科 基本情報

所在地	富山大学 五福キャンパス
学部名	都市デザイン学部
開設年度	平成30年(2018年)4月
定員数	60名
1学年の学期区分	クォーター制
1クォーターの授業期間	8週
授業時間	1時限(90分)
卒業時の学位名称	学士(工学)

都市デザイン学部とは

これからの都市環境は、単なるインフラ整備にとどまらず、 地域の自然や歴史文化、産業に根ざすことが求められ ます。それには、従来のハード整備だけでなく、ハード・ソ フトの両面から安全で安心、快適な都市を考え、地域の 活力を創出していくことが必要です。

富山大学都市デザイン学部では、「地球科学」、「都市と 交通」、「材料工学」の専門知識を融合させ、安全・安心な 都市の創出と地域創生に資する人材の育成を目指して います。学生は、高低差4000mという壮大で美しい自然 を有し、海外にも知られる国内トップレベルの先進的な 都市づくりを推進している富山を実践フィールドとして、 都市デザインに必要な知識と技術を修得していきます。

富山大学都市デザイン学部

〒930-8555 富山県富山市五福3190 TEL. 076-445-6918 https://www.sus.u-toyama.ac.jp/

